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Abstract— SpaceWire is used in the control and data interface 

for an instrument on a pair of small satellites, one of which was 
launched in summer 2017.  The instrument SpaceWire interface is 
implemented in a Field Programmable Gate Array as an 
instantiated core controlled by a LEON3FT CPU, which is also 
implemented as an instantiated core.  The UT699 processor in the 
flight computer provides the spacecraft side’s SpaceWire 
interface.  

A simple message based protocol consisting of four message 
types was defined, based on existing SpaceWire standards.  One 
was for passing commands to and responses from the instrument 
in the form of text strings similar to those from a system console 
where each line of text is passed in a SpaceWire message.  Another 
was for passing spacecraft time to the instrument. The third was 
for transferring files using a subset of the Remote Memory Access 
Protocol (RMAP).  The fourth was for retrieving science data from 
the instrument. 

A set of user application programming interface (API) routines 
provided an abstracted interface to both the serial console (used 
during debug) and the SpaceWire device interface.  

Early instrument development and testing was done with a set 
of utilities that controlled a Star-Dundee USB-SpaceWire brick 
providing a user interface similar to a serial console terminal 
emulator with the addition of file and data transfers.  Later in the 
integration and test process, these utilities were integrated with the 
COSMOS ground systems software used for spacecraft control, 
providing a seamless transition from standalone instrument tests 
to benchtop flat-sat test and full spacecraft level tests. 
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I. INTRODUCTION 

SpaceWire is used in the command and data interface 
between an instrument payload and the host spacecraft. The host 
spacecraft is a standard 3U (approximately 30cm x10cm x10cm) 
spacecraft from Space Dynamics Laboratory in Logan, UT.  The 
spacecraft provides the support infrastructure: solar panels, 
batteries, flight computer, GPS receiver, and attitude control.  
The instrument is based on the JPL Iris radio [1] which uses a 
Xilinx Virtex 6 Field Programmable Gate Array (FPGA) that 
serves both as a digital signal processor and as the instrument 
controller.  The instrument runs the RTEMS operating system 
[2] on an instantiated LEON3FT CPU core. SpaceWire is used 
to pass commands to the spacecraft as ordinary human readable 
strings, and the spacecraft sends back telemetry, also as human 
readable strings. 

The instrument is commanded to collect data for about 10 
minutes at a user specified time.  The digital signal processing 
algorithms produce data at about 5 Mbps which is stored in flash 
memory in the instrument. The ground operators command the 
spacecraft to requests the science data, which is streamed out to 
the spacecraft at high speed over the SpaceWire interface where 
it is stored in spacecraft flash memory. Ultimately, the 
spacecraft sends the data to a ground station when requested. 

There are provisions for the spacecraft to transfer files to and 
from the instrument using a subset of the RMAP protocol [3]. In 
addition, the instrument receives periodic time updates passed 
from the onboard spacecraft GPS receiver once a second, so that 
the time of capture can be set accurately.   

II.  PHYSICAL IMPLEMENTATION 

The SpaceWire interface on the instrument side was 
implemented using the Gaisler GRSpW2 core instantiated in the 

Virtex 6 FPGA, along with the LEON3FT CPU core.  The 4 
LVDS pairs are directly connected to the pins with no external 
driver or receiver to minimize changes to the existing processor 
board design.  The spacecraft Single Board Computer (SBC) 
[4,5] uses the UT699 CPU, which includes the SpaceWire 
interface as part of the chip. CubeSat’s are physically small and 
compact,  Omnetics NanoD (MIL-DTL-32139) connectors were 
used throughout the spacecraft, with twisted pair wires for the 5 
cm cable.  The SpaceWire interface used a 9 pin configuration, 
with the pin assignment identical to the usual SpaceWire Micro-
D. 

III.  PROTOCOL 

 
The interface between the instrument and the spacecraft uses 

four different variable length packet formats, each identified by 
a unique protocol identifier (PID), shown in Table III-1.  The 
use of different PIDs allows easy separation of the messages 
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when received, without needing to further parse the message to 
determine the content. For the most part, the spacecraft Flight 
Software (FSW) just passes the entire SpaceWire message 
through unchanged in either direction.  The spacecraft command 
header is stripped off and the embedded SpaceWire command 
message is passed through to the instrument.   The protocols 
described below are those processed by the instrument. 

Table III-1 Protocol Ids 

PID PROTOCOL ID DESCRIPTION 
0x01 RMAP – used for file and binary data transfer 

to/from the instrument 
0xF0 text (ASCII) data to from the instrument (stdin, 

stdout) 
0xF1 Sampled Data as VITA-49 packets returned from 

the instrument 
0xF2 GPS Binary message to the instrument  

 

The SpaceWire packets follow the format defined in the 
SpaceWire Specification [6]. The packet includes a destination 
address, payload of application specific data, and an End of 
Packet (EOP) marker as shown in Figure III-1. 

For an instrument SpaceWire packet, the address was always 
0xFE, regardless of whether it was sent to or received from the 
instrument since it was a point to point link. The instrument 
includes the Protocol Id (PID) which identifies the packet type, 
followed by the payload data, and ending with the Cyclic 
Redundancy Check (CRC) used to detect data corruption.   

  

A. Serial Console Emulation 

The instrument software provides a serial console style 
interface with variable length text commands which produce 
variable length text response messages.  These command and 
response messages are identified using the 0xF0 Protocol Id. The 
API routine used by the software to send text messages inserts a 
text sequence number and the instrument time before each 
message. 

 

B. File Transfer To the Instrument 

File transfers to and from the spacecraft use a subset of the 
existing RMAP protocol.   These messages use the 0x01 
Protocol Id and the RMAP format which includes the destination 

target logical address (TLA), RMAP header fields, data, RMAP 
CRC, and end of packet marker.  The RMAP header fields 
identify the RMAP instruction, key, initiator address, 
transaction id, address, length as shown in Figure III.4.  The 
address fields define the position within the file being 
transferred and the length is the length of the data portion within 
the message. Write Reply messages are returned to the 
spacecraft with the format given in Figure III-5 if a Write-With-
Reply instead of a Write-Without-Reply instruction is used. 

 To send a file, an FWRITE command is sent giving the name 
of the file and the maximum length of the file. The file length 
allows allocation of the space in the in-memory file system in 
advance of the transfer. Then all the RMAP Write packets are 
sent with the file contents. The payload data from each RMAP 
Write message is written to the specified file at the address in 
the message header.  After all the RMAP data messages are sent, 
an FCLOSE command is sent. RMAP messages received when 
there is no active FWRITE are discarded with an error message. 

C. File Transfer From the Instrument 

Files are transferred from the instrument to the spacecraft 
by using RMAP Read messages as shown in Figure III-6. An 
FREAD command is sent to the instrument, and the instrument 
replies with a series of RMAP Read messages containing the 
file contents. The Transaction Id is used a s a sequence number 
and used to detect missing messages by the ground processing. 
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Figure III-4 RMAP Write Format (data to instrument) 

 
Figure III-5 - Write Reply (from instrument, if requested) 

 
Figure III-3 Text Packet Format 

Figure III-6 - RMAP Read (data from instrument) 



D. Science Data Transfer from the Instrument 

The primary science output of the instrument is long streams 
of sampled data representing the received sensor signals. The 
data is encoded in the Virtual Radio Transport (VRT) packets 
defined in the VITA-49 specification [7].  A SpaceWire message 
was defined that contained the entire VRT packet with the 0xF1 
protocol ID. A VRT packet stream consists of periodic context 
packets interspersed in a stream of data packets, each containing 
250 samples.  The context packet that precedes the data packets 
identifies information about the data stream. 

The command which starts sending science data allows a 
pacing delay to be inserted between each message, typically on 
the order of 10 milliseconds, to limit the overall data rate to the 
spacecraft. 

E. GPS Time to the Instrument 

The spacecraft uses a GPS receiver to determine the time, 
which is provided to the instrument via a GPS message sent as a 
0xF2 Protocol Id message. The original design of the instrument 
used the time distribution message using a CCSDS 
Unsegmented Time proposed by Habinc, et al. [8].  However, to 
minimize the changes in the existing spacecraft flight software, 
a simpler message that encoded the GPS week and milliseconds 
was used, as shown in Figure III-8. 

The GPS milliseconds represents the number of milliseconds 
that have elapsed between the GPS epoch and the next GPS one-
pulse-per-second tick (1PPS), which is received on a discrete 
input line. As each GPS message is processed, the given GPS 
time is saved and the system clock ticks are stored with the 
associated 1PPS tick.  The instrument internal clock is latched 
on each 1pps, along with the last received GPS Milliseconds 
value, which is used to calculate GPS time from instrument 
internal clock time. Software logic detects missing 1pps pulses 
or GPS time messages that are out of sequence. 

IV.  SPACEWIRE API 

The instrument software implements a simple message 
passing style API to provide a consistent interface to the 
SpaceWire hardware.    Transmit and receive tasks handle data 
sent or received and the GAISLER SPW2 SpaceWire device 
driver library functions perform the low-level device operations 
with the hardware.   The “spacewire_init” function combines 
some of the low-level function calls needed to initialize the 
hardware into a higher level API function call. 

 The API functions (Table IV-1)  format data sent from the 
instrument into a SpaceWire message and queue it as a transmit 
request to the transmit queue (TxQ). An instrument user 
application sending data calls one of the three API “send” 
functions to send data as text (PID=F0), RMAP data (PID=01), 
or VITA-49 VRT data (PID=F1).   The transmit task (See Figure 

IV-1) dequeues each TxQ entry and calls the SPW2 spw_tx() 
and spw_checktx() device driver functions.  The spw_tx() 
function transmits the packet out over SpaceWire.   The 
spw_checktx() function blocks until the packet is transmitted or 
fails with an error.  The transmit success and fail statistics are 
updated and can be captured and reported by the 
“spacewire_status” command. 

 

 

The receive task (see Figure IV-2) handles three types of 
incoming packets which are identified by their PID.   These are 
text commands (PID=0xF0), RMAP WRITE data (PID=0x01), 
or GPS data (PID=0xF2).  The SPW2 spw_rx() and 
spw_check_rx() device driver functions are called within the 
receiver task to receive packets.  The spw_rx() function sets up 
the input buffer to receive data and the check_rx() blocks until 
data arrives or detects a failure.  The receive success and fail 

 
Figure III-8 GPS Packet Format 

 
Figure IV-2 SpaceWire Transmit Software Architecture 

 
Figure III-7   VITA-49 Data Packet  

 

Table  III -1 SpaceWire API  

FUNCTION NAME  DESCRIPTION 
spacewire_init() Initialize and sets up the 

buffer for sending and 
receiving data 

send_data_packet(len,tid,buf) Send an RMAP data packet  

send_text_packet(len,buf) Send a text packet 
send_vita49_packet(len,buf) Send VITA-49 packet 
send_write_reply_packet(len, 
id,buf) 

Send fwrite reply 

set_fwrite_params(fn, fsize) Updates file IO name and 
size from the FWRITE 
command 

write_packet_to_file(pkt) Decodes an RMAP packet 
and writes the data to a file 

dump_packet(buf,len) Outputs packet data as a 
series of text messages with 
HEX ASCII encoded data 
values 

print_diag_packet(buf, 
len,opt) 

Decodes and outputs the 
contents of a packet in a 
series of text messages 

 



statistics are updated and can be captured and reported by the 
“spacewire_status” command. 

Incoming text messages are forwarded to the command input 
message queue which is serviced by the command processor.  
Any incoming RMAP WRITE data packets are decoded and the 
data is written to the file previously opened by an FWRITE 
command.  Any incoming GPS data packets are processed by 
calling the GPS API. 

The integrity of the incoming SpaceWire messages is 
checked using the data CRC and, if it matches the expected CRC 
value, the message is handled.  If not, a receive error count is 
incremented and the message is discarded. 

There are 4 API entry points shown in Table IV-1 which map 
to specific commands that the instrument can receive: fwrite() 
and fclose() used before and after importing data into a file, a 
“configure” command to enable diagnostic messages, and a 
“status” command to report SpaceWire API statistics. 

Table IV-1 SpaceWire Related Commands API 

FUNCTION  DESCRIPTION 
fclose_cmd Closes a file previously opened 

by the FWRITE command 
fwrite_cmd Creates a zero-filled file of the 

specified length in preparation 
for writing incoming RMAP 
data 

spacewire_cfg_cmd Configures SpaceWire API 
diagnostic option on or off; 
When diagnostics are on, the 
contents of sent and received 
messages is output for 
debugging 

spacewire_status_cmd Reports SpaceWire API 
statistics 

 

V. GROUND SUPPORT SOFTWARE 

The spacecraft ground system and much of the testing uses 
the open source COSMOS system from Ball Aerospace [ 9, 10]. 

The COSMOS system uses the Ruby language with procedures 
and modules written in Ruby to run test sequences, send 
commands, receive and format telemetry. During the 
development of the instrument, we had 3 fundamentally 
different use configurations: 

• Test Bench Configuration - Standalone instrument on 
the bench with a Star-Dundee USB-SpaceWire brick 

• FlatSat Configuration - Instrument connected to flatsat, 
using a RS422 link 

• Spacecraft Configuration - Instrument integrated into 
the spacecraft 

The Test Bench Configuration had a laptop computer with 
the Star-Dundee USB SpaceWire brick and associated tools and 
drivers connected via SpaceWire to the instrument.  This 
configuration was used for the initial development and testing of 
the instrument hardware and software. 

The FlatSat Configuration is a breadboard configuration 
including non-flight qualified instances of the spacecraft Single 
Board Computer and Interface Card. The spacecraft radio is 
emulated in the FlatSat by a serial port connected to a PC.   The 
FlatSat includes a flight-like SpaceWire interface with an uplink 
/ downlink radio interface simulated over an RS-232 connection. 

The Spacecraft Configuration has the instrument integrated 
into the spacecraft and uses a ground station RF link for the 
uplink/downlink interface.   

These configurations were accommodated by creating a 
Ruby software class hierarchy (see Figure V-1) that supported a 
standard (configuration independent) interface for interacting 
with the instrument.  In this way, all command scripts, unit-tests, 
and other ground utilities operate with the instrument without 
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Figure IV-2  SpaceWire Receive Software Architecture 

 



needing to be altered when the physical configuration changed. 
Simply using a class’s method, e.g. “send_inst_command” 
allows the tests to works on any interface or configuration. 
Ground processing software only needed to be written once to 
support all three testing configurations. 

Ruby classes supporting the generic interface were created 
to automatically separate the incoming telemetry, a combination 
of instrument ASCII, file data, and VRT packets, into 
appropriate streams. These streams supported testing of the 
instrument and software in a flight-like environment. 
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